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We study the quantum chaotic dynamics of an initially well-localized wave packet in a cosine
potential perturbed by an external time-dependent force. For our choice of initial condition and
with /A small but finite, we find that the wave packet behaves classically (meaning that the quantum
behavior is indistinguishable from that of the analogous classical system) as long as the motion is
confined to the interior of the remnant separatrix of the cosine potential. Once the classical motion
becomes unbounded, however, we find that quantum interference effects dominate. This interference
leads to a long-lived accumulation of quantum amplitude on top of the cosine barrier. This pinning
of the amplitude on the barrier is a dynamic mechanism for the quantum inhibition of classical

mixing.

PACS number(s): 05.45.+b, 03.65.Sq

I. INTRODUCTION

While the inhibition of classical mixing in quantum
chaotic dynamics is a generally accepted consequence of
the linearity of the Schrédinger equation, how this in-
hibition is manifested in the dynamics of physical sys-
tems is not fully understood. This is a difficult question
to address from a theoretical point of view because the
complex nature of chaotic systems all but precludes an
analytical approach, making general physical insights dif-
ficult to come by. However, by studying the semiclassical
limit for simple low-dimensional systems, one can relate
the quantum dynamics for specific case studies to generic
features of the classical chaos and thereby discern generic
semiclassical mechanisms that lead to the quantum inhi-
bition of mixing.

The mechanism responsible for classical mixing is
the repeated folding and stretching of the classical La-
grangian manifold in the vicinity of hyperbolic fixed
points [1], and when the motion is chaotic, these folded
structures, or “tendrils,” eventually fill almost all the
available phase space. The folding and stretching pro-
cess leads to an abundance of caustics, or turning points,
in the Lagrangian manifold. Since quantum effects are,
loosely speaking, amplified at caustics, this can have a
dramatic effect on the semiclassical description of the
motion. One example of this is seen in the scattering
of a wave packet off of a barrier [2]. When the wave
packet reaches the turning point, it acquires a temporary
standing wave modulation arising from the interference
between the piece of the packet that has already reflected
off the caustic and the piece that has not yet reached
it. Thus the caustic temporarily amplifies the underlying
quantum nature of an apparently classical object. Schul-
man quantified this propensity for nonclassical effects at
a caustic by showing that the contribution to the propa-
gator per degree of freedom should go as %'/2 rather than
h'/3 [3] within a “critical region” [4] of the caustic where
the actions of the direct and reflected paths differ by less
than A.
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Despite the dynamical sense conveyed by the term
“mixing,” most studies of the inhibition of mixing in
quantum chaos have explored either the statistics of en-
ergy levels or the spatial localization of eigenstates for
(bounded) conservative systems. Localization, or “scar-
ring,” of chaotic eigenstates was first observed by Heller
for the stadium billiard [5], a strongly chaotic system
with isolated unstable periodic orbits. Heller’s scars are
local enhancements above the background intensity that
occur along those orbits that are the least unstable—
meaning that the ratio of the frequency of the orbit to
the Lyapunov exponent that characterizes the divergence
of adjacent trajectories is significantly greater than one
[6]. A second mechanism for eigenstate localization has
been observed by Bohigas et al. [7] in the soft chaos of
two weakly coupled quartic oscillators. The local en-
hancements found in the eigenstates for this system arise
from the quantization of the remnants of Kol’mogorov-
Arnol’d-Moser (KAM) tori, or “cantori.”

In contrast, we focus on the time domain rather than
the energy domain, using semiclassical ideas to relate the
quantum dynamics to the evolution of the classical La-
grangian manifold for a chaotic Hamiltonian system. In
a recent publication [8] we discussed the role of classi-
cal phase space structures in the quantum evolution of
a wave packet prior to the onset of chaos. In particu-
lar, we considered the motion of a quantum particle in
a cosine potential perturbed by an external force vary-
ing sinusoidally in time. We posed the problem in the
naive semiclassical limit where the natural length, mass,
and time scales make % small. We studied the dynam-
ics of a wave packet that was initially well localized in
position and momentum and compared it to that of the
classical distribution in phase space. Provided the classi-
cal distribution remains inside the separatrix of the un-
perturbed motion and avoids the hyperbolic fixed points
on the separatrix, the two initially identical distributions
were found to remain indistinguishable, even though both
spread out to fill much of the initial well. However, when
the Lagrangian manifold interacts with a hyperbolic fixed
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point and acquires a tendril-like feature, the wave func-
tion was found to exhibit a persistent nodal structure
that represents the first appreciable quantum effect with
no classical analog. We also showed that this feature
is relatively benign, having little impact on the physical
observables.

In this paper we consider essentially the same system
but focus our attention on the classical exit event when
a substantial fraction of the classical distribution crosses
the separatrix and leaves the well, marking the onset of
chaos. Here we will show that the apparent equivalence
of the quantum and classical distributions rapidly disin-
tegrates when a “turning point” in the Lagrangian man-
ifold that corresponds to a true caustic moves past a hy-
perbolic fixed point and outside the initial well. Specif-
ically, we observe that while the peak in the classical
probability density associated with the caustic follows
the caustic out of the well, the peak in the quantum dis-
tribution becomes pinned at the top of the barrier. This
pinning effect represents a specific dynamical mechanism
for the quantum inhibition of classical mixing in a time-
dependent Hamiltonian system.

We have deliberately chosen to study a time-dependent
Hamiltonian with one degree of freedom because it is suf-
ficiently complex to exhibit chaos yet simple enough to
be studied directly in phase space. We point out that
this problem is not equivalent to the conservative two-
dimensional problem obtained by elevating time to the
role of an additional degree of freedom because of the dis-
tinct role of time as a parameter rather than an operator
in quantum mechanics. The quasiconservative system
that one obtains by invoking the strobed-time Floquet
formalism [9] is not relevant to our problem either since
the phenomena we observe occur on a time scale that
is a fraction of the period of the driving and cannot be
discussed meaningfully in terms of the quasienergy Flo-
quet states. Not being constrained by the symmetry of a
time-invariant Hamiltonian, the mechanisms we observe
are not limited to conservative systems and may in fact
be disallowed by that symmetry in certain cases.

Although the origin of the pinning effect, like the nodes
of our previous paper, can be understood semiclassically,
the origins of the two effects are distinctly different. The
nodes in Ref. [8] were shown to be the result of a beating
phenomenon in the Van Vleck—-Gutzwiller (VVG) prop-
agator [10] between paths having the same Gutzwiller
phase. The most prominent nodes were found to be the
closest in action to a false caustic in the flow field which
developed as a result of the interaction of the Lagrangian
manifold with the hyperbolic fixed point. In contrast, the
structure we observe here is a result of interference be-
tween direct and reflected paths—which differ by 7/2 in
Gutzwiller phase—and the most prominent structure is
in the neighborhood of a true caustic.

Because the stationary paths in the path integral con-
verge at a caustic, the stationary phase approximation
that leads to the VVG propagator by summing each clas-
sical path independently breaks down. Therefore, to dis-
cuss the behavior near the caustic, we adopt a semiclas-
sical propagator derived by Schulman [3] that is strictly
valid only in the immediate vicinity of a caustic. Since

this propagator cannot be evaluated numerically as eas-
ily as the VVG propagator, we develop an approximate
“connection formula”— similar in spirit to the WKB con-
nection formulas—to evaluate the Schulman propagator
from the VVG expression. This yields an expression that
is valid even at the caustic. We use this hybrid propa-
gator to show that the differences between the classical
and quantum behavior associated with the classical exit
event can be understood semiclassically in terms of the
area-preserving deformation of the manifold.

Furthermore, our propagator can be used to study the
exponential tail of the wave function in the shadow or
classically forbidden region of the caustic which is missed
completely by the VVG propagator. This is important
to our problem since the stretching of the exponential
tail is the primary semiclassical mechanism for the quan-
tum system to explore the world outside the remnant
separatrix. Hence the VVG propagator, which puts zero
amplitude in the classically forbidden region, becomes
inadequate to describe the dynamics of the wave packet
after the exit event. We point out that this failure of the
VVG propagator is not necessarily inconsistent with the
long-time accuracy achieved by Tomsovic and Heller [11]
in the case of the stadium billiard. Since the amplitude in
the forbidden regions is evidently negligible in that prob-
lem [4], it follows that the stretching of the exponential
tail and associated phenomena that we observe must not
be significant there.

The main body of this paper is organized as follows. In
Sec. IT we describe the Hamiltonian, the choice of initial
conditions, and the method of analysis. (The present
discussion is rather brief, since a complete discussion is
contained in Secs. II and III of Ref. [8].) We explain our
semiclassical analysis in Sec. III and in Sec. IV we present
our results. We close in Sec. V with a summary of our
results and some concluding remarks.

II. PROBLEM

We study the motion of a particle of mass 1/2 in a
cosine potential subject to a sinusoidally driven external
force. The Hamiltonian is given by

H(p,z,t) = p* — —;— cos (mz) — ez sin (wt + @) (1)

with w = 2.5, € = 0.126, and ¢ = 1.5493. We include the
nonzero constant ¢ [12] to make contact with the calcu-
lation of Ref. [8]. For these choices of w and e [13] the
external force may be considered as a small perturbation
in the context of KAM theory [14], and we are justified
in discussing the dynamics in the context of the remnant
orbit structure of the unperturbed motion. The separa-
trix at the threshold energy of the cosine potential plays
a particularly important role in the onset of the chaos,
being the first orbit to rupture but the last to fully dis-
integrate as a result of the perturbation. This orbit is
shown in Fig. 1(a) with the hyperbolic (unstable) fixed
points and the stable and unstable manifolds labeled ac-
cordingly.

In this paper we study the dynamics for initial con-
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FIG. 1. (a) Unperturbed separatrix at zero energy show-
ing the stable and unstable manifolds of the hyperbolic fixed
points at * = +1. The location and size of the initial
wave packet are given by the three sigma ellipse centered
at (po,zo) = (—0.7889, —0.3215) for comparison to the dot
plot representation in Fig. 3(a). (b) The unperturbed (solid)
and perturbed (dashed) potentials Vo(z) = ; cos(wz) and
V(z,0) = Vo(z) — ez sin (¢) with a schematic depiction of the
initial wave packet.

ditions in the neighborhood of the point (pg,z¢) =
(—0.7889,—0.3215). The trajectories starting in this
neighborhood, being very near the separatrix, rapidly
lead to unbounded motion at tex =~ 2.5. (Note that the
exit time tex ~ T', where T' = 27 /w is the period of the
external force.) This choice of initial conditions allows us
to examine the escape event associated with the onset of
chaos with a minimum of computational effort.

To study the quantum evolution, we propagate an ini-
tial wave function forward in time by the split operator
method [15] generalized to time-dependent systems. Our
choice of A = (2007)~! sets the quantum length scale for
the problem to be small compared to the scale of vari-
ation in the potential. This allows us to pick an initial
wave function that is initially well localized in both po-
sition and momentum. We choose for ¥(z,0) a Gaussian
wave packet of width o centered at (po, o)

P(z,0) = (10?)" V4 exp [—(—w—"—‘f‘—’)—z— + i’—;i‘l(m - zo)] .

202
(2)

The initial width o = 0.0225 of the wave packet is chosen
to be equal to that of the ground state wave function at
the bottom of the cosine potential. We include one co-
sine well on each side of the well at the origin (three wells
total) to avoid spurious interference between the escap-
ing quantum amplitude and that remaining in the initial
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well due to the periodic boundary conditions imposed by
the fast Fourier transform algorithm. A schematic depic-
tion of the initial wave function in the cosine potential is
shown in Fig. 1(b). The solid curve gives the cosine po-
tential Vp(z), while the dashed curve gives the complete
time-dependent potential V(z,0) = Vp(x) — exsin (¢).
Accompanying the seesaw motion of the external wash-
board potential, the x coordinate of each hyperbolic
fixed point at (pp,zr) oscillates sinusoidally in time with
zp ~ n — (2¢/n%)sin(wt+¢) (n = 1,3,5,...) and
prn = 0. The wave packet is launched in the negative
z direction, as shown. After reflecting off the barrier at
z =~ —1 (which rises in time to meet it), it subsequently
scatters off the top of the barrier at £ = +1, where it is
partially transmitted.

To study the classical evolution, we evolve the classical
equations of motion forward in time for a set of 10000
“particles” with different initial conditions. To ensure
that the classical and quantum descriptions agree ini-
tially, the initial conditions are drawn at random from
a two-dimensional Gaussian distribution of initial condi-
tions centered at (po, o) and having widths in p and =
equal to the widths in momentum and position of the ini-
tial wave function of Eq. (2). We compare the classical
evolution to the time-evolved quantum probability den-
sity Pym(z,t) = |¢(z,t)|*> by making a histogram with
respect to = of the time-evolved classical distribution.

III. SEMICLASSICAL ANALYSIS

We remind the reader that the time-evolved wave func-
tion is found from the initial wave function ¥ (z,0) and
the propagator as follows:

Y(z,t) = /dw'G(m,:c';t)d)(w',O). (3)

For our semiclassical analysis, we require an accurate ap-
proximation to the propagator. Far from a caustic, we
use the well-known propagator due to Van Vleck and
Gutzwiller [10]

) 1/2
rgy
Gvva(z,z',t) = Z (27rih>
cl paths

1/2
8%8(x,2',t) /

ozdx'

while close to a caustic we employ an expression for the
propagator due to Schulman [3]

L\
’
c! y T, ) = p
Gsen(w,2',1) (27rzﬁ) B

x Ai(z) exp (zé’f-tp—c(f—_ic)) . (5)

Az, 2',t) v

(625/9zdx") 1

h

In these two expressions S(z,z’,t) is the classical action
as a function of the initial (') and final (x) positions,
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S. = S(zc,2’,t) and (pc, z.) respectively give the action
and phase space coordinates at the caustic, and v counts
the number of times the trajectory connecting z’ and
x encounters a caustic where vm/2 is the “Gutzwiller
phase.” The argument z(z,z’,t) of the Airy function
in Eq. (5) is found [16] by solving the boundary value
problem for the quantum fluctuations around the classi-
cal trajectory z(z’,t) [3] to obtain the eigenvector with
the lowest eigenvalue A\; o< A(z,z',t)/t2. While both the
numerator and denominator in the prefactor of Eq. (5)
separately vanish at = z., their ratio is finite so that
the singularity in Eq. (4) at z = z. is absent.

Both of these expressions represent a WKB approx-
imation to the exact propagator [3], meaning that the
path integral is evaluated by the method of steepest de-
scents [17]. The former, which assumes that the station-
ary paths are well separated, is valid when the relative
action for any two paths is much greater than £, while
the latter, which assumes that two of the stationary paths
are coalescing at a caustic, is valid only in the immediate
vicinity of the caustic.

As an initial value problem, implementing the propa-
gator of Eq. (4) is a very reasonable task in one dimension
for short times, even when the dynamics are chaotic, and
one can often get away with simply ignoring the caus-
tic spikes associated with the singularity in the prefactor
[11]. Unfortunately, as we mentioned above in Sec. I, we
do not find this to be the case for our problem. But an
exact calculation of Eq. (5) is basically untenable because
of the need to solve a boundary value problem at each
point in space. To avoid this, we approximate Gg., by
relating it asymptotically to Gyvg. The validity of this
approximation rests on being able to find a region not
too close to the caustic where both Gyvg and Gse, are
reasonably accurate in order to match them, similar in
spirit to the usual WKB connection formulas for semi-
classical wave functions [2]. This “connection formula”
gives the argument of the Airy function in terms of the
action difference between the direct and reflected paths.
Thus one has only to solve the classical equations of mo-
tion (an initial value problem) and compute the action
along the classical paths to evaluate Gsep-

For our problem, the initial wave function of Eq. (2) is
sufficiently localized at ' = xo that near the caustic we
may approximate ¥ (z,t) in Eq. (3) by G(z, zo, t) directly.
In Eq. (5) we take z to be sufficiently large and negative
(more precisely |z|73/2 <« 1) to replace Ai(z) with its
leading asymptotic expansion. Also, we assume that the
sum over classical paths in Eq. (4) consists of a single
pair of direct and reflected paths and that the prefactors
for these two paths are equal.

In this approximation we find that

2_ 1 9%S(z,z',t)
Gvve(z, 1" = 2mh Oxdx! .
x |1+ cos (As;i(a:) - g)] (6)

and

|Gsen (2, D)1 o |2(2)] /2 [1  cos (§Iz<w)|3/2 B ;—r)]

(7)

where AS(z) = S.(z,z0,t) — Sa(x,z0,t) > 0. (The
subscripts d and r denote the direct and reflected
paths, respectively.) By comparing the cosine arguments
for Egs. (6) and (7) one obtains the relation z(z) =
—[3AS(z)/4R)?/3. Although the condition |z|3/2 < 1 is
satisfied (to about 1%) only if AS/A > 2w, we find that
using this expression for z in Eq. (5) works remarkably
well even as AS/h = 0. For the shadow region of the
caustic (z > z.) we estimate the magnitude of z = +|z|
by reflecting the action difference about the caustic, i.e.,
we take AS(z) = AS(z — z.). We cannot infer the con-
stant prefactor of Eq. (5) in a similar manner because
the quantity |z|~1/2 =~ (3A/4k)~/3 only crudely mimics
the behavior of the VVG prefactor as z = z..

To evaluate |Gvva|? and |Gsen|? according to Egs. (6)
and -(7) we evolve the vertical strip of phase space de-
fined by ' = z¢ forward in time according to the clas-
sical equations of motion. At the desired time we ob-
tain the action S(z,z’,t) and its mixed partial deriva-
tive 8%25(z,z’,t)/0z0z' = —8p'(z,2’',t)/Oz as functions
of = for the direct and reflected paths by interpolating
between the time-evolved grid points representing the
strip. Given these quantities, the rest of the calculation
is straightforward.

Although we have argued that the VVG propagator
fails near caustics, the overall character of the wave func-
tion is often preserved despite the presence of caustic
spikes. Even when the wave function is piled up at the
caustic, so that the effect cannot be ignored, the prob-
lem is often temporary, disappearing once the amplitude
has scattered away. However, when there is a sustained
accumulation of amplitude at the caustic like we see in
our problem, the VVG propagator becomes inadequate.

To demonstrate this worst case scenario, we compare
| (z,t)|? for the full quantum calculation to both the
VVG and Schulman expressions for |G(z, zo,t)|? at t = 3,
as shown in Fig. 2. Both curves are matched onto the full

4.0

3.0

2.0

P(x)

FIG. 2.

Comparison of Pgn(z,t)
|G(z, zo,t)|3ve (dash-dotted curve) and
(dashed curve) at ¢ = 3. Also shown is the cellular dynamics
calculation of the VVG probability density (dotted curve).

(solid curve) to
IG(Z,CEO,t)Igch
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quantum calculation at the primary maximum (z = 0.89)
to determine the “correct” prefactors [18]. This is nec-
essary because we do not know the Schulman prefactor
and, being so close to a caustic, we cannot trust the
VVG prefactor. For the sake of comparison we also in-
tegrate Eq. (3) numerically for the VVG propagator us-
ing Heller’s cellular dynamics method [19]. (We cannot
do the same for the Schulman propagator because our
method of approximation suppresses both the phase in-
formation and the prefactor which depend on po.) The
critical and shadow regions of the caustic at z. ~ 1.09
are indicated on the the plot.

Comparing the VVG and Schulman expressions for
|G(z, zo,t)|? to the true quantum probability density, we
see that the VVG expression gets the oscillations to the
left of the caustic about right, but it fares badly in the
critical region of the caustic, as expected, and it lacks
an exponential tail altogether. The Schulman expres-
sion, on the other hand, not only gets the oscillations
about right, but also correctly describes the exponen-
tial behavior at the caustic and into the shadow region
where z(z) > 0. In the cellular dynamics calculation the
spurious singularity in the integrand causes the primary
peak to have too much amplitude and to be shifted to the
right, and the change in the location of the caustic across
the set of time-evolved vertical strips that contribute to
the integral gives rise to a tail in the shadow region that
poorly approximates the true feature. While the integra-
tion smears the singularity out, it clearly does not fix the
problem.

IV. RESULTS

In order to discuss the quantum dynamics of this sys-
tem in a semiclassical context, it is necessary that we first
point out several features of the classical flow as it ap-
proaches and interacts with the hyperbolic fixed points.
In Figs. 3(a)-3(h) we show the time evolution of the clas-
sical phase space distribution for ¢ = 0.0-3.5 at intervals
of At = 0.5 (= 0.2 T). Each dot represents the time-
evolved coordinates for one of the 10000 particles in the
distribution. We superimpose the separatrix of the un-
perturbed problem in the first two frames for reference,
and in the last two frames we indicate both the caustic
(at ¢) and the feature that we call the false caustic (at
fe).

First, the initially compact object rapidly spreads out
along the remnant separatrix, being stretched by the un-
stable manifold of the hyperbolic fixed point at z =~ —1,
as shown in Figs. 3(a)-3(d). As a result, the parti-
cles appear to be following the same (threshold) orbit
in Fig. 3(e). They in fact approach the hyperbolic fixed
point at x = +1 with a fraction of the original energy
dispersion. This behavior is distinctly different from
the spreading that occurs in the absence of the time-
dependent perturbation and is not just a consequence of
the orbital period being time dependent.

Second, the bright side of the caustic (z < z.) is not
restricted to the inside of the initial well (z < z =~ 1),
as shown in Figs. 3(g) and 3(h). The phase space coor-

(a) t=0.0 |(b) t=0.5
1.0 4 J
-1.0} - ]
(©) t=1.0 |(d) t=1.5
1.0t X 3
% 0.0 / /\ ]
-1.0}f 1 1
(e) t=2.0 | (D) t=2.5
1.0 T e
-1.0f 1 . ;
(€3] t=3.0 |(h) t=3.5
1.0 . 4 o c 4
feon . ’ . c «.. :
2 0_0_..;,.& \/ ]
1.0} 1 2 ]

.10 00 10 20 -10 00 10 20
X X

FIG. 3. (a)—(h) Time evolution of the Gaussian phase space
distribution at increments of At = 0.5. The “tendril” as
discussed in the text refers to the feature in the distribution
between the caustic (at c) and the false caustic (at fc) in (g)
and (h).

dinates of the caustic have clearly crossed the separatrix
in both cases. The remnant separatrix is thus only a
“partial barrier to transport” [20] that temporarily con-
fines the phase space flow, and the interaction of the flow
with the hyperbolic fixed point is the door to the region
of phase space that was inaccessible in the absence of
chaos. Here we note that the classical dynamics does
not achieve local mixing inside the remnant separatrix
prior to the exit event, in contrast to the analysis of Bo-
higas et al. [21] which assumes that local mixing is well
established before regions separated by partial transport
barriers communicate with each other.

Third, the tendril that results from the interaction of
the flow with the hyperbolic fixed point—meaning the
feature in the Lagrangian manifold between the caustic
and the false caustic in Figs. 3(g) and 3(h)—gets thinner
and longer as a function of time. The tendril is thus act-
ing like a closed curve in phase space whose enclosed area
is conserved by Liouville’s theorem. Neglecting the term
J AH(t)dt o € that follows from the inexact cancellation
of the time-dependent potential along the two paths [8],
the area “enclosed” by the tendril AA = f:ﬂf ¢ Ap(z)dx
is indeed approximately given by the relative action be-
tween the two paths at the false caustic AS(z¢c, '),
where (psc,zs.) denote the coordinates of the false caus-
tic.

The false caustic is a fold or “turning point” in the
Lagrangian manifold that does not correspond to a real
caustic, meaning that the caustic count v is not incre-
mented by one there, but rather is decremented by one.
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[In Fig. 3(g) the fold is actually just on the verge of
forming.] Particles do not flow around this fold as a
function of time. Rather, those in the immediate vicin-
ity of the false caustic move rigidly with the manifold
as it deforms. Consequently, the quantity AS(zsc,z')
approaches a constant value as the gap between the two
paths at the false caustic closes. Since AS(zf.,z') = AA,
we see that the area-preserving nature of the flow that
gives rise to the stretching of the tendril is closely tied
to the existence of the false caustic in the Lagrangian
manifold.

Having discussed some general features of the classi-
cal flow, we now examine the corresponding quantum
and classical probability densities shown in Figs. 4(a)-
4(h). We see that the classical and quantum distributions
are essentially indistinguishable for ¢ < 2, but that this
equivalence disappears once the tendril forms and the
classical motion becomes unbounded (¢ > 2). We should
also point out that, while some of the particles appear
to escape the well to the left at ¢t = 1, they subsequently
get pulled back inside [see Figs. 3(c)-3(e) and 4(c)—4(e)].
This spurious escape event, unlike the real event, is not
accompanied by any folding of the Lagrangian manifold
and the equivalence of the quantum and classical distri-
butions is preserved.

Just prior to the departure of the quantum from the
classical behavior at ¢ ~ 2.5 we see that z. and x; are
nearly coincident, as are the quantum and classical max-
ima. The caustic then moves off in the positive  direc-
tion away from the hyperbolic fixed point and the clas-
sical maximum follows. The quantum maximum, how-
ever, is left behind, stuck on top of the cosine barrier.
This pinning of the quantum peak on the barrier, as a
mechanism for the inhibition of mixing, is the key feature
that we observe in the quantum chaotic dynamics of this
system.

We emphasize that this sticking or pinning phe-
nomenon is not a result of the difference in quantum and
classical transmission coefficients for a cosine barrier—
which is negligible for our value of A. In particular,
we find no appreciable difference between time-evolved
quantum and classical probability densities when we scat-
ter a Gaussian wave packet off an isolated, rigid cosine
barrier at the threshold energy. Nor is the pinning caused
by the side-to-side and/or up-and-down motion of an iso-
lated potential barrier. If we mimic the oscillations in
position and energy near the hyperbolic fixed point of
the perturbed cosine potential with a potential barrier of
the form [1 + S(t)] cos [kz — R(t)], we again find no ap-
preciable difference between the quantum and classical
scattering at near-threshold energies. We conclude that
the history of the wave packet in the cosine well, particu-
larly its delocalization prior to the escape event, is crucial
in giving rise to the differences between the classical and
quantum distributions that we observe.

Ironically, the delocalization of the wave packet is, in
the following sense, related to eigenfunction localization.
Having noted that the classical phase space distribu-
tion of Fig. 3(a) evolves to resemble the separatrix, one
might expect the corresponding time-evolved wave func-
tions to resemble the near-threshold eigenstates of the

unperturbed Hamiltonian. Quite generally, for poten-
tials with local maxima (or saddle points in two or more
dimensions) at energies well above the ground state en-
ergy, the near-threshold eigenstates are highly peaked or
“localized” at the potential energy maxima [22]. This
feature is clearly manifested in the wave functions of
Figs. 4(e)-4(h). The overlap of the still localized wave
packet and the extended threshold eigenfunction is small
in Figs. 4(a) and 4(b), but as the wave packet spreads
out along the separatrix, the overlap increases. Thus the
accumulation of amplitude at the hyperbolic fixed point
represents the propensity for the chaotic dynamics to in-
crease the overlap between the evolving wave function
and the threshold eigenstates. In this sense, the sticki-
ness of the hyperbolic fixed point that gives rise to the
pinning effect is a time-dependent manifestation of eigen-
function localization.

We emphasize that the pinning effect occurs on a time
scale short compared to the period of the driving. If
one were to study the strobed dynamics of our time pe-
riodic Hamiltonian at long times, one would expect the
Floquet states rather than the eigenstates of the unper-
turbed problem to govern the (coarse-grained) dynamics,
particularly the Floquet states having the greatest over-
lap with the initial state. An analysis of the strobed-time
quantum map, like those of Geisel et al. [23] and Spina
and Skodje [24] for the quantum kicked rotor, would miss
this effect entirely.

The pinning effect can also be understood dynamically
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FIG. 4. (a)-(h) Time evolution of P.(z,t) (dashed curve)
and Py, (z,t) (solid curve) at increments of At = 0.5 ~ 0.2 T.
Note the divergence of the classical and quantum maxima
that occurs in (g) and (h) accompanying the emergence of
the tendril in Fig. 3.
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as a quantum interference effect between paths in the
semiclassical propagator. The interference we see does
not result from a wave packet that splits while interact-
ing with a hyperbolic fixed point and later recombines at
another hyperbolic fixed point [24]; rather, the interfer-
ence occurs at the first interaction with a hyperbolic fixed
point and between very similar paths. To explain this we
focus on the tendril feature in the region of the caus-
tic just after the escape event (at ¢ = 3). We show the
quantum and classical probability densities as well as the
Schulman WKB approximation of Eq. (7) in Fig. 5(a) and
the corresponding classical phase space distribution in
Fig. 5(b). In Fig. 5(c) we plot the relative action AS(x)

and VVG path amplitude |625/0z0z’ |;,1=/§0 for the time-
evolved vertical strip p(z,xo). The direct and reflected
paths and the locations of the caustic (c), false caustic
(fe), and z coordinate of the hyperbolic fixed point are
indicated accordingly.

The agreement between the quantum distribution and
the WKB approximation in Fig. 5(a) clearly demon-

strates that the structure of the wave function in the
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FIG. 5. (a) Same curves of Fig. 4(g) magnified to show
the structure associated with the tendril. Also shown is the
semiclassical approximation ||> ~ |Gscn|?> as described in
Sec. III (dotted curve). (b) The corresponding phase space
distribution of Fig. 3(g). (c) The relative action AS(z)/27
in units of A (solid curve) and the (inverse) VVG ampli-
tude 6S(z) = /2nh|8%S/9z0z'| /2

e — o along the direct and
reflected paths (dashed curves).

vicinity of the tendril has a semiclassical origin. Specif-
ically, the oscillatory nature of the wave function here
is caused by interference between the two nearby paths
that comprise the tendril. These paths do not contribute
to the propagator independently, however, because of
the proximity of their actions [see Fig. 5(c)], which is
why we must use Schulman’s approximation to the two-
path WKB propagator to describe the interference prop-
erly. Our semiclassical analysis is only valid in the region
x > xf., however, because of the sudden divergence of
the VVG amplitudes to the left of the false caustic [see
also Fig. 5(c)]. We observe similar agreement between the
quantum distribution and Schulman’s approximation at
t = 2.5 and t = 3.5, although the presence of additional
paths complicates matters somewhat in the latter case.

The region for which AS(z,z')/k < 1—or equivalently,
the region where Schulman’s propagator should replace
the VVG propagator—grows directly with the length of
the tendril. Since the area enclosed by the tendril AA
is roughly constant in time with AA ~ AS(z¢.,z'), as
explained above, it follows that the Airy structure associ-
ated with the tendril simply gets stretched as the tendril
is stretched. As a result, the quantum peak remains near
zp =~ +1 where it originated. The area-preserving na-
ture of the chaotic Hamiltonian flow, coupled with the
presence of the false caustic in the Lagrangian manifold,
is thus responsible for the peak in the quantum distri-
bution being held at the hyperbolic fixed point, thereby
inhibiting the quantum transport of probability across
the separatrix.

V. CONCLUSIONS

We have shown that the quantum probability density
rapidly diverges from that of the analogous classical sys-
tem when the tendril formed by the interaction of the La-
grangian manifold with the hyperbolic fixed point leads
to (classically) unbounded motion. We have also shown
that this divergence is the consequence of a quantum in-
terference effect that pins the quantum peak associated
with the caustic at the top of the potential barrier. This
pinning effect is a concrete example of how quantum in-
terference suppresses the exploration of “phase space”
outside the broken separatrix to inhibit the classical mix-
ing.

The origin of the pinning effect was shown to be semi-
classical, resulting from interference in the propagator
between the direct and reflected paths associated with
the tendril. We found it necessary to use an approxi-
mation to the WKB propagator due to Schulman that is
valid near caustics, rather than the Van Vleck-Gutzwiller
propagator, in order to study this interference properly.
This is because the stretching of the tendril that accom-
panies the chaotic dynamics phase locks the entire region
of phase space explored by the tendril in close proxim-
ity to the caustic. We approximate Schulman’s propa-
gator by relating its asymptotic expansion to the Van
Vleck—Gutzwiller propagator. This avoids the untenable
boundary value problem one must otherwise solve in or-
der to calculate Schulman’s propagator directly. We have
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shown that Schulman’s propagator, evaluated in this way,
accounts for the difference between the behavior of the
quantum and classical systems at the times we consider.

We emphasize that this interference occurs between
direct and reflected paths, differing in Gutzwiller phase
by 7/2—in contrast with the interference effect discussed
in Ref. [8]. Thus we conclude that the interference be-
tween direct and reflected paths (for these very early
times) has no permanent effect on the wave function as
it sloshes back and forth in the potential well as long as
the classical motion remains bounded—just as the struc-
ture that appears in a wave packet as it scatters off of
a rigid barrier [2] is temporary, disappearing once the
packet is fully reflected. When the motion becomes un-
bounded, however, we have shown that the interference
between direct and reflected paths in the tendril perma-
nently modifies the wave function, profoundly affecting
the quantum-classical equivalence that characterizes the
dynamics prior to the exit time. We have shown that
this divergence of the quantum and classical behavior is
a direct consequence of the folding and stretching of the
Lagrangian manifold that accompanies the classical flow
across the separatrix and this, in turn, is a direct conse-
quence of the onset of the classical chaos.

Because the pinning effect is directly related, in the
semiclassical sense, to generic features of the classical
Hamiltonian chaos, we argue that this mechanism for the
inhibition of mixing is itself generic. Thus one should ex-
pect to find the pinning effect in other weakly driven
chaotic Hamiltonian systems as well. Moreover, since
classical canonical perturbation theory and the KAM
theory for the origin of soft chaos are applicable for
both time-dependent and time-independent perturba-
tions [25], this mechanism should also appear in conser-
vative (Hamiltonian) systems characterized by soft chaos.

Lacking the time dependence responsible for the false
caustic in our problem, we suspect that the higher-order
caustics (where the caustic count v changes by more than
one) that can exist in such systems because of the in-
creased dimensionality would play the role of the false
caustic in giving rise to the pinning effect.

We cannot go so far as to argue that the pinning effect
is generic to all Hamiltonian quantum chaos, however,
because the presence of tendrils and either false caus-
tics or (possibly) higher-order caustics in the Lagrangian
manifold is not, by itself, sufficient to produce this fea-
ture. The partial barrier to classical phase space trans-
port associated with the broken separatrix appears to be
the more crucial element. While the strongly chaotic sta-
dium billiard problem, for example, exhibits both higher-
order caustics [4] and tendril-like structures (see the two-
dimensional Birkhoff projection of the Lagrangian man-
ifold in Ref. [4]), it does not possess the simple KAM
structures (i.e., the cantori or broken separatrices) that
act as partial barriers to transport [20]. Nor does the
quantum system manifest the stretching of the exponen-
tial tail in the classically forbidden region (or the associ-
ated pinning effect), or so we assume given the long-time
accuracy of the VVG propagator achieved by Tomsovic
and Heller for that problem mentioned in Sec. I. But
whether or not this mechanism is significant in other sys-
tems characterized by hard chaos is still an open question.
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